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We present a review of quantum turbulence, that  is, the turbulent motion of 
quantized vortex lines in superfluid helium. Our discussion concentrates on the 
turbulence produced by steady, uniform heat flow in a pipe, but touches on other 
turbulent flows as well. We have attempted to  motivate the study of quantum 
turbulence and discuss briefly its connection with classical turbulence. We include 
background on the two-fluid model and mutual friction theory, examples of modern 
experimental techniques, and a brief survey of the phenomenology. We discuss the 
important recent insights that  vortex dynamics has provided to the understanding 
of quantum turbulence, from simple scaling arguments to  detailed numerical 
simulations. We conclude with a discussion of open questions in this field. 

1. Introduction 
This symposium is properly dedicated to many subjects in classical fluid dynamics 

which will demonstrate, we are certain, that  the spirit of G. I. Taylor is very much 
active in our research community, It is, therefore, with some trepidation that we 
present a discussion of a topic where the investigation has developed quite separately 
from those lines of research associated with Taylor’s name and work, and which has 
really only recently been recognized as an independent field of inquiry. Our subject 
is the turbulent motion of quantized vortex lines in superfluid helium. We are aware 
that many of our collegues in fluid mechanics regard the study of superfluidity as 
a remote, arcane and technically formidable discipline. We would note that the 
temperatures ranges we are concerned with were experimentally accessible in 
G. I. Taylor’s younger years, that  the frontier in low temperature physics is a t  
temperatures more than three orders of magnitude lower than those dealt with in 
this paper, and that the basic techniques are no more demanding than many modern 
fluid mechanics investigators encounter in their daily work. 

We would like to demonstrate that, once the details of the production and 
maintenance of low temperatures are accepted as routine, the leading intellectual 
approaches to  our subject have been very much in the spirit of G. I. Taylor: simple 
experiments based upon a profound knowledge of the underlying questions to be 
addressed. 

Our group has been active in research in this field for some years. We present an 
overview of our own experimental work and ideas, together with the work of other 
groups which constitute our view of what is important in the subject. Our account 
is, therefore, not a balanced review of the subject, which we believe has been burdened 
with experiments which have accumulated mountains of data with little overall 
purpose. We are fortunate that Tough (1982) has undertaken a survey of this vast 
accumulation of data and has succeeded in identifying certain key characteristics. 
In particular he has proposed a classification of four turbulent states which allows 
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considerable insight into the database. The existence of this, and other modern 
reviews, allows us to cite the reviews as secondary sources with considerable economy 
of space. For authoritative information, the primary sources should always be 
consulted. 

The plan of this paper is as follows. Section 2 on early history and ideas contains 
historical material and a general discussion of the phenomenon of quantum tur- 
bulence. Our motivation in studying the phenomenon and certain related questions 
are discussed in 93, while 94 describes some important and representative modern 
experimental methods. Section 5 contains a survey of current knowledge of turbu- 
lence produced by steady counterflow. Section 6 contains a brief discussion of vortex 
dynamics and the information one can obtain by scaling arguments, while $ 7  reviews 
the insights and current limitations of numerical simulations of vortex dynamics. 
Section 8 contains a description of turbulence generated by other flows, i.e. flows with 
divergent heat flux, non-zero mass flux, or unsteady heat flux, a subject currently less 
well developed than that due to steady counterflow, but interesting nonetheless. 
Section 9 contains a summary discussion, and enumeration of some important and 
basic unsolved problems. 

2. Early history and ideas 
2.1. Leiden measurements 

The early history of our subject begins with investigations a t  Leiden University on 
the thermal conductivity of liquid helium. Under its own vapour pressure, helium 
remains a liquid from its normal boiling point a t  4.2 K to absolute zero. Liquid helium 
in the temperature range from 4.2 K to the lambda transition a t  TA = 2.172 K is 
called helium I and that from TA down to absolute zero, helium 11. Helium I boils 
and has classical fluid properties. Helium I1 is absolutely quiescent and exhibits 
superfluidity. Helium I and helium I1 exist under pressure as well. The early history 
of the discovery of the lambda transition is outlined in a recent publication by 
Donnelly & Francis (1985). 

Keesom & Keesom (1936) measured the thermal conductivity of helium I in the 
apparatus of figure 1 (a) .  The liquid was contained in a cylindrical layer L of diameter 
3.6 cm and depth 0.5 em. The top and bottom of the cell consisted of copper blocks 
A and B, each containing a heater and thermometer. At T = 3.3 K the authors 
obtained a thermal conductivity of 6 x cal/deg cm-l s-l, which is of the order 
of magnitude of the conductivity of gasses a t  ordinary temperatures. The thermal 
conductivity of helium 11, on the other hand, is so great that  a capillary tube must 
be used to  observe a temperature gradient, The first systematic measurements were 
by Keesom, Keesom & Saris (1938) using the apparatus of figure 1 (b ) .  A, B, C and 
Dare copper pieces containing chambers a ,  b, c and d filled with liquid helium through 
metal capillaries. Capillaries of different width and length were used between B and 
C. B and C also contained thermometers and a heater was attached to A. The authors 
found that the heat conductivity has a pronounced maximum at 1.7 to 2.0 K with 
conductivities as high as 810 cal/deg cm-’ s-l, i.e. more than 800 times that of copper 
a t  room temperature, and 1.3 x lo7 the value obtained for helium I. Keesom & 
Keesom called helium I1 ‘ supra-heat conducting ’, with good justification. 

It is interesting that the devices illustrated in figure 1 are in use today in more 
or less the same form. The helium I cell appears today in the Journal of Fluid 
Mechanics as a BBnard convection cell (cf. Pfotenhauer, Lucas & Donnelly 1984). The 
so-called ‘counterflow’ apparatus of figure l ( b )  still represents one of the most 



V 

Quantum turbulence 

(6) 
c 

# -- 

-B 
-L 

A - 

E- 

D- 

d- 

C -  
C- 

b- 
B- 

a- 
A- 

389 

_.- 
/ * -  

FIGURE 1. Apparatus for determining: (a) the thermal conductivity of helium I (Keesom & Keesom 
1936), ( b )  the relationship between heat flux and temperature gradient in helium I1 (Keesom, 
Keesom & Saris 1938). The components are discussed in the text. 

important and fundamental techniques for studying the flow of helium 11: a heat 
source, and thermometers to measure the temperature gradient. A modern vision of 
this apparatus is discussed in $4.1. One can also construct chemical potential probes 
in place of thermometers, as we shall discuss in $4.4 below. 

2.2. Superjluidity 

The ability of helium 11 to flow through narrow channels without dissipation was 
discovered simultaneously by Kapitza (1938) and Allen & Misener (1938) and named 
‘superfluidity’ by Kapitza, by analogy to  the frictionless flow of electrons in a 
superconductor. 

It is interesting that the main thread of our story begins with the work of 
P. L. Kapitza, who was in Cambridge in the 1930s, and was a colleague of G. I. Taylor. 
We shall perhaps never know what conversations Kapitza and Taylor had on low 
temperature phenomena, but G. I. Taylor did tell one of us (R. J. D.) that  he had 
significant conversations with Kapitza about the design of the helium gas bearing 
support of the piston used in the low temperature expansion engine of a Kapitza 
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FIGURE 2. Kapitza’s apparatus designed to study the jet of normal fluid emerging from a 
counterflow apparatus. The superfluid is supposed to enter the channel in potential flow and 
therefore does not disturb the vane (Kapitza 1941). 

liquifier. This same principle is used in most modern helium liquifiers in operation 
in the world today. 

2.3. Kapitza’s early experiments 
The exigencies of politics (Badash 1985) took Kapitza from Cambridge to Moscow, 
where he began an investigation of the extraordinarily high heat transport through 
narrow channels filled with helium I1 and the small viscosity associated with this flow 
state. Kapitza (1941) built a number of different experimental arrangements: in one 
of them a counterflow capillary was equipped with a rotating inner rod so that the 
effect of stirring could be studied (it reduced the thermal conductivity). This is the 
first instance of the study of the flow of helium I1 between concentric cylinders. This 
subject is recently reconsidered in a paper by Donnelly & LaMar (1986). In  figure 2 
a torsionally suspended vane, 4, was used to  measure the force of the normal fluid 
jet emerging from the counterflow apparatus, 1, containing a heater and thermometer 
through capillary 2. The chief contribution of these experiments was to establish some 
of the spectacular properties of helium 11 and set the stage for the theoretical work 
of Landau. 
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The thermohydrodynamics of helium I1 has been studied extensively since the 
work described above. Discussions of the dramatic properties of helium I1 are 
contained in many sources : for hydrodynamically oriented readers an article by 
Roberts & Donnelly (1974) contains much of the theory and experiment relevant to 
our present purposes. We shall give a few paragraphs here to orient the reader and 
to establish notation. 

2.4. The two-jiuid model and second sound 

Helium I1 acts hydrodynamically as if it  were a mixture of a normal fluid of density 
p,, velocity u, and a superfluid, of density ps and velocity us. The superfluid appears 
to carry no entropy, and the entire heat content of the fluid must be added to convert 
a mass of superfluid to normal fluid. The total density, 

P = Pn+Ps, (2.1) 

is about 0.14 g/cm3. Under modest chemical potential gradients the superfluid can 
flow with no measurable friction, and flow states can be set up in toroidal geometries 
which appear to persist indefinitely. 

The normal fluid has a viscosity of order 20 pp and tends to be immobilized in 
porous powders of size less than about 1 pm. The superfluid, however, is not so 
hindered, and flows easily through the finest channels one can manufacture. Porous 
media, then, form a semipermeable separator for helium 11, passing the superfluid 
and not normal fluid. A temperature difference AT across such a barrier, will develop 
a ‘fountain pressure ’ AP, and these variables are related to the entropy per unit mass 
S,  by AP 

AT 
- = ps. 

Suppose liquid helium is contained in a tube with a closed end fitted with a heater, 
as shown schematically in figure 3, and the heater supplies heat flux q (Watts/cm2). 
When heat is supplied, the superfluid will flow towards the heater, pick up heat 
content, transform to normal fluid and flow away from the heater out to the helium 
bath. This peculiar counterflow has no net mass flux, i.e. 

j = pn vn +ps us = 0 ,  (2.3) 

and since the superfluid has no entropy, the heat flux is q = pSTv,. If the heat is 
switched on and off periodically, the two fluids will execute small amplitude 
counterflow described by a standing wave of second sound. Second sound is a wave 
of temperature difference in helium I1 which has low natural attenuation and very 
little dispersion. Second sound is an important tool in quantum turbulence research 
because second sound is attenuated by quantized vortices. 

The combined evidence of the above and other experiments leads to the two-fluid 
equations of motion (for a rigorous discussion, see Roberts & Donnelly 1974) 

Dvs - - & V P + ~ ,  XVT- F ~ , ,  
P s D t -  p 

Dun - -P. V P - ~ ,  SOT + F,, + Y v ~ V ,  
P 

P n x  - 

(2.4) 

where is the coefficient of shear viscosity and F,, is a mutual friction force between 
the normal fluid and superfluid which we will discuss in $2.6 below, and which is zero 
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FIGURE 3. Schematic diagram of a thermal counterflow apparatus for studying quantum turbulence. 
Second sound transducers are represented on the side walls with a resonance excited between them. 
( a )  q < qc ( b )  q > qc ( c )  rotation only. 

in the absence of vortex lines. To these are added conservation equations for mass 

aP 
and entropy 

-+div(p,u,+p,u,) = 0, 
at (2.6) 

a 
at 
--ps+div (pSu,) = 0, 

and the equation for the flow of the superfluid 

curl us = 0. 

These equations lead to, among other things, equations for the propagation of first 
and second sound. 

2.5. Quantized vortices and rotation 

Equation (2.8) was a t  first thought to deny rotation to  the superfluid fraction of 
helium I1 altogether, but Osborne (1950) found that the rotation of helium I1 was 
indistinguishable from that of helium I. Following the suggestion of the quantization 
of circulation by Onsager (1949) and the theory of vortex lines in rotating helium 
by Feynman (1955), Hall & Vinen (1956a, b) verified Feynman’s prediction that in 
a bucket of rotating helium 11, the normal fluid rotates uniformly with the bucket 
but the superfluid vorticity o = curl us appears as a uniform array of discrete vortex 
lines parallel to the axis of rotation (see figure 3c).  For most purposes, a quantized 
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vortex line can be thought of as a classical vortex line in the superfluid with a hollow 
core of radius a (about one Angstrom) and quantized circulation 

where the integration encircles the core, h is Planck’s constant and m the mass of 
the helium atom: K k 9.97 x lo-* cm2 s-l. I n  a bucket rotating a t  angular velocity 
D radians per second the areal density of vortex lines, n,, is the same as the line 
density L measured as length of line per unit volume (cm/cm3 = cm-2), and is given 
by the ratio of the vorticity of solid body rotation to  the quantum of circulation: 

n , + L L = - -  zQ - 2000 Q lines cm-2. (2.10) 
K 

Vortex lines appear in more general flows as well, such as the flow between rotating 
cylinders and in the counterflow experiment described above. I n  the latter the vortex 
lines appear only after some critical heat flux qc, and seem to be nearly randomly 
oriented with respect to the flow as suggested in figure 3 ( b ) .  The vortices are 
sometimes described as a ‘tangled mass’, and densities up to the order of lo5 cm-2 
are easily generated. A review of the structure and dynamics of quantized vortex lines 
has recently appeared (Glaberson & Donnelly 1986). 

2.6. Mutual friction in helium 11 
Gorter & Mellink (1949), motivated by experiments on pressure and temperature 
differences down to narrow channels, proposed that the extra dissipation above that 
owing to viscosity alone could be adequately represented by the addition of a mutual 
friction term to the equations of motion. This term is now usually written as 

(2.11) 

where u,, = un-us,  vns = l(uns)l, and A is a function of T (and in principle u,,) and 
is of order 50 cm s-l gP1. The broken brackets denote spatial and temporal averages. 
This form of F,, is useful for vortex turbulence work in channels, and is most 
frequently used in the steady state with time averaged quantities. 

Studies by Hall & Vinen (1956a,b) showed that a second sound wave propagating 
across uniformly rotating helium I1 (see figure 3 c )  is attenuated by the vortices, 
whereas propagation axially, i.e. parallel to a, produces no attenuation. They 
deduced that the mutual friction term in (2 .4)  and (2 .5)  for rotating helium I1 should 
be 

(2.12) 

where B and B’ are mutual friction parameters depending on temperature, second 
sound frequency, and flow velocity. The mutual friction force (2.12) gives rise to an 
extra contribution aL to  the attenuation of second sound : 

BQ BKL - 
a L = - - - - ?  2u, 4u2 

(2.13) 

the latter relationship to line density in rotation coming from (2 .10) .  For a current, 
detailed discussion of mutual friction, see Barenghi, Donnelly & Vinen (1983) and 
Swanson et al. (1986). 

Much of the study of quantum turbulence is done in steady state pipe flow. The 
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time and cross-sectional averages of (2.4) and (2.5) in steady state (the ‘mutual 
friction approximation ’) are, to first order, 

0 = - ( P ~ / P )  ( V T )  - (Fns), (2.14) 

0 = - ( P N / P )  ( O P ) - P ~ , S ( V T ) + ( F ~ ~ ) + ~ ~ ( V ~ ~ ~ ) ,  (2.15) 

where brackets denote time and cross-sectional averages. Adding (2.14) and (2.15), 
we find 

(VP> = ~ ( ~ 2 V n > t  (2.16) 

which suggests that the pressure gradient V P  in turbulent superflow is not much 
different to that in laminar (Poiseuille) flow. This is known to be roughly true, and 
is called ‘the Allen and Reekie rule’. A second-order term that is ignored here is 
- (pn(v, * V) v,), a term we feel is important for its qualitative effects, although i t  is 
not of much importance quantitatively for analysing experiments. We will say more 
about this in $9. 

With a laminar mean flow assumption, we have for the pressure gradient 

(2.17) 

where G is a factor known theoretically for Poiseuille flow for each channel shape and 
d is the channel size. The thermodynamic potential gradient per unit mass, usually 
called the chemical potential in the helium I1 literature, vanishes in laminar flow: 

(2.18) 

consistent with dissipationless flow for the superfluid. Thus the laminar flow 
temperature gradient ;s 

- 

VPL - @Vn V T ,  = - - -__ 
pS pXd2 (2.19) 

In  turbulent flow, the total temperature gradient is 

V T  = VT,+VT,, (2.20) 

where V T ,  is, neglecting the increase in V P  above the laminar value, 
c 

(2.21) 
- -  

and since F,, varies roughly as vis, the neglect of the extra pressure gradient becomes 
quantitatively reasonable for large flow rates. The chemical potential gradient is 
given by 

V p  = --. Fns (2.22) 
P S  

This shows that dissipation owing to vortices produces a direct change in chemical 
potential. We shall describe a detector for this quantity in 54.4. 

The connection of the mutual friction coefficients to line length per unit volume 
may be seen by a simple analogy. In  uniform rotation, from (2.10) and (2.12), the 
dissipative term of F,, parallel to v,, has the magnitude Bp,p,~L/2p. For turbulent 
flow the assumption is that mutual friction acts in the same manner on each segment 
of vortex line in a tangle as it does on an array produced by rotation; but that in 
second sound attenuation, for example, an average of one-third of the vortex line 
segments in the tangle will be oriented parallel to the second sound propagation 
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direction and not detected. Thus for isotropically oriented vortex lines, the magnitude 
of the dissipative part of the mutual friction term can be written 

(2.23) 

where Lo = ( L ) .  For a more careful discussion of the relationship between second 
sound measurements and the properties of the tangle, see Swanson (1985) or Swanson 
& Donnelly (1985). 

The boundary conditions for the two-fluid model are straightforward. Generally 
one assumes that neither normal nor superfluid components can flow into a boundary, 
that the normal component has zero tangential velocity at a wall, and the superfluid 
can slip. Ordinarily one would believe that the temperature T would be continuous 
between a solid and liquid helium, but the Kapitza resistance phenomenon (see, for 
example, Pfotenhauer & Donnelly 1985) shows that T is not continuous in the 
presence of a heat flux into a boundary. The appropriate boundary conditions in 
the presence of moving vortices are not well understood (see Glaberson & Donnelly 
1986 for a discussion of what is known) and may be important in understanding the 
normal fluid velocity profile above critical (see $9). 

2.7. Vinen’s theory 
A model for the development of the tangle of quantized vortex lines, developed from 
the ideas of mutual friction, was introduced by Vinen in a classic series of papers 
(Vinen 1957 a-c, 1958). This theory considers a spatially homogeneous distribution 
of vortex lines whose time rate of change is determined by competing growth and 
decay processes. Vinen derived the growth term by dimensional analysis and 
modelled the decay process after the decay of classical turbulence in the Kolmogorov 

(2.24) 
cascade. He obtained 

- = x1 Bpn u,, Lf -- 
dt 2n ’ 

where x1 and x2 are undetermined parameters. In  steady state (dL/dt) = 0 and the 

dL x 2  KL2 

equilibrium line density is 
Lo = Y 2 $ l S >  (2.25) 

where y = ~ ~ B p , x ~ / ~ p x ~ .  The u& dependence of Lo predicted by Vinen’s model is 
roughly correct above the critical heat flux (see $5.1). y, which contains the 
temperature dependence, has to be determined experimentally since x1 and x2 are 
not known. 

3. Motivation and goals for the study of quantum turbulence 
3.1. I s  quantum turbulence really turbulence? 

The readers of the Journal of Fluid Mechanics are well aquainted with the enormous 
complexities of turbulent flow in classical fluid mechanics. There is certainly challenge 
enough in that subject to occupy anyone’s attention. Why then should effort be put 
into the study of quantum turbulence ? 

To begin, one might ask whether quantum turbulence is turbulence? Let us 
consider several well-known features of classical turbulence and compare them to 
quantum turbulence. We follow here a development of ideas by Tennekes & Lumley 
(1972). 

(i) Irregularity. Experimental evidence is that quantized vortex lines in turbulent 
flow are random. Counterflow channels show homogeneous, but not isotropic, 
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distribution of vortex line density. The power spectral density of fluctuations is flat 
from 0 to about 1 Hz, then falls off in a fashion resembling a low pass electrical filter 
circuit. Simulations of self-sustaining vortex structures in helium I1 produce irregular 
configurations. 

(ii) Diffusivity. Classical turbulent flows are highly diffusive, leading to much 
higher intensities of transport processes than one finds from uncorrelated molecular 
motion (kinetic theory). It has been stated that quantum turbulence is not diffusive, 
and evidence for this is the sharp decrease in line density away from a region of high 
counterflow velocities (see $8.3). We feel that  this is evidence for a lack of diffusion 
away from the turbulent region, but there is evidence for a great increase in transport 
processes within the turbulent region. The normal fluid velocity profile is essentially 
flat in turbulent counterflow (see §5.5) ,  so that it is not a t  all like Poiseuille flow, 
suggesting a great increase in momentum transport. 

(iii) Large Reynolds numbers. Classical turbulence often originates as an instability 
of laminar flows if the Reynolds number becomes too large. Flows in helium I1 exhibit 
similar instabilities as the normal and superfluid velocities rise. Since the viscosity 
of the superfluid is strictly zero, the Reynolds numbers involved are, in some sense, 
infinite. 

(iv) Three-dimensional vorticity Jluctuations. Tennekes & Lumley (1972) say ‘vor- 
ticity dynamics plays an essential role in the description of turbulent flows’. It often 
seems that in quantum turbulence it plays the only role of importance, though there 
is some evidence to the contrary (see $9). We shall see that what is measured in 
experiments in helium I1 is the magnitude of the vorticity, and motion of this 
vorticity is required for the dissipation observed (Anderson 1966). There is evidence 
from vortex simulations that the three-dimensional nature of the motion is crucial 
for a self-sustaining tangle (Schwarz 1985). 

(v) Dissipation. The superfluid is inviscid and cannot by itself dissipate energy. 
But quantized vortex lines couple the normal and superfluid components by mutual 
friction and can lead to large levels of energy dissipation, much greater than the 
viscosity of the normal fluid alone could produce. 

(vi) Continuum. Quantum turbulence is described as a continuum phenomenon 
(see, for example, 52.7). The vortices are generally spaced by quite macroscopic 
distances (> 1 pm), and when distances between vortex cores decrease to the order 
of the core size, quantum mechanics enters the problem. Quantum mechanics is, of 
course, also a continuum theory. A very nice connection between quantum mechanics 
and hydrodynamics is given by the Madelung transformation (see, for example, Jones 
& Roberts 1982). 

(vii) Turbulence is not a unique feature of a givenJluid. Classical turbulence is not 
a property of a fluid, but of a flow. One might a t  first think that quantum turbulence 
is unique to the superfluid, and this would certainly be true at absolute zero. But 
experiments are done in helium I1 which is all superfluid a t  absolute zero and all 
normal fluid at the lambda transition. The ratios p,/p and p,/p vary over orders of 
magnitude. Applying pressure makes enormous changes in the properties of helium 
11. Adding 3He to the 4He also produces profound differences. Indeed a whole class 
of ‘tailored’ superfluids can be made by making mixtures of 3He and 4He and 
applying pressure. The turbulence properties of these fluids have not yet been studied 
in detail. Pure 3He itself becomes superfluid at about 1 mK, and has quantized 
vortices as well. The properties of turbulence in superfluid 3He have not yet been 
addressed. 

There are also differences between the study of classical and quantum turbulence. 
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In classical turbulence, vortex stretching is very important for two reasons: it 
increases the vorticity in a volume and it decreases the lengthscale of the eddies 
(Tennekes & Lumley 1972). The lengthscale decrease leads to an energy cascade, 
eventually allowing the eddies to be efficiently killed by viscosity. I n  quantum 
turbulence the picture is similar to a point : vortex stretching still leads to longer lines 
and to crowding of the lines (see Baym & Chandler 1983). A difference arises because 
of the lack of superfluid viscosity, so the lengthscale decrease due to  crowding does 
not kill the lines in the classical manner. Instead, mutual friction and boundary 
interactions lead to most of the vortex line decrease. Another difference arises because 
classical vortex stretching shrinks the core (concentrates the vorticity), whereas 
quantum vortex stretching cannot change the core of an individual vortex line (its 
structure being fixed with the temperature). The process will be the same only in the 
continuum limit. Townsend (1961) has argued that a continuum representation is 
probably only useful for isothermal flow, i.e. where there is no counterflow. 

A major experimental difference is that  much Bf the classical work involves 
measurements of local velocities and their correlations, whereas in quantum tur- 
bulence no local probe has yet been developed and measurements reflect a volume 
averaged vorticity. Further conceptual differences come from the nearly singular 
vorticity distribution, the ‘slip ’ boundary condition for the superfluid velocity, the 
additional degrees of freedom resulting from the (partial) uncoupling of convective 
mass and heat transport, and the dependence of the normal and superfluid densities 
on w& (cf, Roberts & Donnelly 1974 $d).  

3.2. Is quantum turbulence really quantum mechanics ? 
By and large, phenomena in the hydrodynamics of helium I1 obey classical 
hydrodynamics, often beyond the range where one might confidently use continuum 
models. For example, the mean atomic spacing in liquid helium is about 3.6 8, but 
the best current estimate for the vortex core size (Glaberson & Donnelly 1986) is about 
0.8 8, or one quarter of the interatomic spacing. This suprisingly small core radius 
can occur because the velocity of the superfluid is considered to be given by the 
gradient of the phase of the order parameter (for a discussion of these terms see, for 
example, Vinen 1966) and the order parameter is the square of the amplitude of a 
nonlinear Schrodinger equation. I n  such a continuum description the interatomic 
spacing does not arise directly, although it  must obviously set the order of magnitude 
of the smallest scales. Let us give an example of a phenomenon which overlaps 
classical and quantum descriptions. 

Rotons, the most prevalent excitations of the superfluid, have a wavelength 
h x 3.3 8, comparable t o  the interatomic spacing. Rotons are known to have a strong 
fluid dipole moment of strength p = P/4np, where P = fiq, which gives rise to strong 
interactions between them. These interactions take the form of scattering and binding 
ofrotons. Scattering (unbound) orbits in a classical theory (Roberts & Donnelly 1973, 
1974) have an average critical impact parameter of about 6.7 8, in good agreement 
with experiments determining the roton viscosity. The binding energy is known 
experimentally to be (-0.22f0.07) K (Murray, Woerner & Greytak 1975). This 
quantity was calculated classically by Roberts & Donnelly (1973, 1974) and they 
obtained a value of about - 18.4 K with a stable separation of about 1.05 8. The 
result conflicts violently with experiment. A quantum mechanical treatment of the 
binding of two rotons (Roberts & Pardee 1974) amends the mean separation to 
about 12 8, and the binding energy to  about -0.29 K, in substantial agreement with 
experiment. We see that the interaction of two rotons a t  a distance substantially 
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closer than their associated deBroglie wavelength is a quantum mechanical problem, 
and we expect that the interaction of a vortex line and a roton or of two vortex lines 
a t  similar distances to also be a quantum mechanical problem. 

The fate of two elements of vortex line which approach closely is called the 
‘reconnection’ problem. It involves quantum mechanics. We shall return to a 
discussion of reconnection in $7.3 below. 

The circulation about a vortex line is strictly quantized in the unit K = h/m.  We 
can safely conclude that quantum mechanics is an important part of quantum 
turbulence. Indeed, if h+O, the problem would not exist. 

3.3, Why shouEd we bother to study quantum turbulence? 
Classical turbulence has more than enough interest and challenge to occupy any 
investigator’s attention. If one were to try to justify putting time and effort into 
studying quantum turbulence one might advance the following arguments : 

(i) The turbulence of fluids in general remains one of the major unsolved problems 
in physics. 

(ii) Quantum turbulence is easy to produce, compact in scale, and in a fluid of 
basically simple and accurately known properties. 

(iii) Quantum turbulence is manifest over an enormous range of physical variables. 
Channel sizes (the ‘wind tunnels’ for quantum turbulence) span four orders of 
magnitude : from micrometres to centimetres. The superfluid fraction p , / p  varies from 
unity a t  low temperatures to  lop2 and even as experiments are conducted near 
TA. We believe that experiments near the lambda transition are in a very interesting 
regime for study. Vortex densities L can easily vary over five orders of magnitude. 

(iv) In  counterflow experiments, a t  least, the normal fluid is probably in laminar, 
or weakly turbulent flow; hence the effect of its motion is not likely to be a major 
conceptual barrier to the understanding of the total flow. 

(v) The laws of vortex dynamics appear to be fairly well understood on a 
fundamental level, as discussed in $6. 

(vi) The laws which govern the ability of a vortex tangle to be sustained in a flow 
should be able to be understood quantitatively on the basis of vortex dynamics. The 
decay of a vortex tangle to heat (i.e. rotons and phonons) is a major challenge which 
may be easier to understand than the corresponding problem in classical turbulence, 
because the vorticity is confined to one-dimensional lines with quantized circulation. 

(vii) The heat transfer in counterflow has practical applications in cooling 
superconducting devices (Pfotenhauer & Donnelly 1985). 

The list of what we would like to know about quantum turbulence is very large. 
Some of the important questions might include the following : 

(i) How are quantized vortices nucleated? Do pre-existing vortices play a crucial 
role 1 

(ii) How do quantized vortex structures grow and decay and extract energy from 
the flow Z How do quantized vortices reconnect on contact Z 

(iii) How do vortex structures decay into heat Z 
(iv) What is the nature of vortex structures: their configuration, motion, inter- 

actions and statistical properties ‘! 

4. Modern experimental methods 
The most common studies of quantum turbulence are temperature-difference 

measurements in narrow channels and second sound attenuation measurements in 
wide channels. We shall describe two modern experimental set-ups as examples of 
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FIQURE 4. Apparatus designed by Baehr & Tough (1985). The operation is described in the text. 

current techniques, as well as a novel device to measure chemical potential differences. 
Examples of ion measurements and generation of shock waves conclude this section. 
These are representative of current techniques, and other apparatus will be described 
in the appropriate sections. 

4.1. Temperature-difference measurements in narrow channels 

We have already described the standard capillary tube experiment of Keesom et al. 
(1938). A modern apparatus reported by Baehr & Tough (1985) has the advantage 
that flows of arbitrary v, and v, can be generated at will. 

The apparatus is shown in figure 4. The flow tube ('wind tunnel ') is about 0.01 cm 
inside diameter and connected between a large reservoir a t  temperature T ,  and a 
small reservoir at temperature T ,  containing a heater H,. A further small reservoir 
containing a heater H, is connected by a superleak, allowing superfluid flow, but not 
normal flow, nor (of course) heat flow. 

Applying electric current to  H, pumps superfluid from the reservoir a t  TI  to the 
main helium bath. The superfluid flux through the experimental flow tube, and thus 
the (average) superfluid velocity v,, is determined by the liquid level capacitor (the 
level decrease as liquid flows out decreases the capacitance, since helium gas has a 
lower dielectric constant than the liquid). Normal fluid flow is produced in the flow 
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FIGURE 5. Schematic of one possible arrangement of wide channel interchangeable sections used 
at the University of Oregon. Both transverse and axial second sound transducers are shown. 

capillary tube by energizing heater H,. Since no heat can pass through the superleak, 
the average normal fluid velocity v, is given by q/pST.  

The experiment can be run in a pure counterflow mode by leaving the fountain 
pump H, off. For q < qc the only dissipation is due to the normal fluid viscosity, and 
the temperature difference AT is given by (2.19). Equation (2.19) is sufficiently 
accurate that i t  can be used to determine the average diameter d of the flow tube. 

The temperature in the H, chamber is determined with a carbon glass resistor. 
The temperature T ,  is electronically regulated using standard techniques and 
has fluctuations averaged over 3 s of < 5 pK. The overall error in determining 
AT = T,  - TI is about 50 pK. 

Appropriate combinations of the fountain pump and counterflow heater allowed 
different regions of the (vn, us)-plane to be explored, as will be described in $8.1. 

4.2. Second and temperature-diflerence measurements in a wide channel 

Pure counterflow measurements in a channel 1 cm x 1 cm x 40 cm have been pursued 
by the Oregon group for about 10 years. The advantage of a wide channel is that 
second sound transducers can be installed to measure the attenuation of second sound 
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owing to the vortices. The disadvantage is that the effective thermal conductivity 
of the fluid is so large because of the superfluidity that it is difficult to  measure the 
temperature gradient. 

An unwelcome difficulty arose in the early designs (Cromar 1977) when i t  was 
determined that the vortex line density was not axially homogeneous, but decreased 
away from the heater. A new channel was designed and built which exhibits axially 
homogeneous line density, probably because of the effort made to produce a uniform, 
leak-free heater source. The channel is constructed of interchangeable units joined 
by indium O-ring seals, into some of which we can insert second sound transducers 
or thermometers (for details, see Barenghi 1982; Swanson 1985). One possible 
arrangement of the channel is shown schematically in figure 5. Figure 6 is a 
photograph of the rotating table upon which the channel is mounted. 

The heater is a nichrome film deposited on a fused quartz substrate, joined by 
indium seals to the channel. Electrical contact to the nichrome is through super- 
conducting indium along two opposite edges, providing a uniform current density. The 
heat capacity of the film is very low and hence can respond very rapidly to pulsed 
inputs. 

The transverse second sound transducers are capacitor loudspeakers and micro- 
phones with Nuclepore membranes. The membranes have many 0.1 pm holes, allowing 
ready passage of superfluid but nearly no passage of normal fluid; membrane 
oscillations create counterflowing oscillations of the normal and superfluid, i.e. second 
sound. For details of their behaviour, see Giordano (1984a,b), Giordano & Musikar 
(1984), and references therein. Line densities determined by propagation in the 
transverse direction are called L,. 

The axial attenuation of second sound is measured by transducers a t  the bottom 
of the channel, and line densities determined from this are called LA. The transmitter 
was made of electrical resistance board, and the receiver was a Nuclepore transducer 
described above. The resistance board is able to produce a powerful low-frequency 
burst of second sound needed to  traverse the long axial path in the presence of high 
vortex line densities. 

Second sound attenuation can be determined by the width of a resonance peak or 
the decay of echoes of a second sound burst. We find the two methods agree to better 
than 2 yo. The best line density resolution we can currently achieve is about 20 omp2 
over a range of 0-200000 emp2, a factor of 50 better than we could obtain 9 years 
ago (Cromar 1977). 

Axial temperature difference measurements are made by using two germanium 
resistance thermometers mounted 30 cm apart on the sidewalls, forming two legs of 
an impedance bridge. The thermometers are matched (i.e. their resistances as a 
function of temperature are nearly the same) so that correlated temperature 
fluctuations (i.e. bath temperature fluctuations) cause only a small second-order 
effect in temperature-difference measurements. Temperature gradients smaller than 
lop8 K/cm could be determined in this way. 

4.3. Ion measurements in a wide channel 

Another tool which has been profitably used is the interaction of ions in liquid helium 
with vortices (Donnelly & Roberts 1969). Negative and positive helium ions can be 
produced in helium I1 by various means such as radioactivity and field emission. 
Negative ions are relatively large (R x 16 A) bubbles cut out of the liquid owing to 
the repulsive electron-helium atom interaction. Positive ions are smaller (R FZ 6 A) 
solid objects held together by electrostrictive forces. I n  the vicinity of a vortex line 
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FIGURE 6. The quantum turbulence apparatus a t  the University of Oregon mounted on the 54 inch 
rotating table. The channel is contained in the metal dewar flask mounted on the centre of the table. 
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FIGURE 7. Apparatus designed by Awschalom et al. (1984) to study the distribution of line density 
and normal fluid velocity in a counterflow. S is a tritium source to produce ionization, G1, G2, and 
G3 are pulsed grids with associated guard plates, C1, C2 and C3 are collectors, W is the grounded 
channel wall. The dotted region represents a typical charge pulse, and extends 0.8 cm into the plane 
of the figure. 

an ion does not experience any drag owing to the circulating superfluid, but it does 
experience the radial pressure drop associated with the potential flow about the 
vortex. Both species of ions are pushed into the vortex core, the negative ions more 
strongly. The result is that a t  temperatures above 1 K (which is the range of interest 
of our discussion) positive ions do not remain trapped owing to thermal fluctuations. 
Negative ions remain trapped up to a ‘lifetime edge ’ of about 1.7 K, forming a useful 
probe of quantum turbulence. 

Awschalom, Milliken & Schwarz (1984), have used pulsed ion techniques to study 
the vortex-line length density distribution and normal fluid velocity field in turbulent 
counterflow. This technique was previously used by Schwarz & Smith (1981) (see 
$8.3). Their apparatus is shown in figure 7. An ion source and a variety of 
interchangeable grid and collector assemblies are built into the channel walls. In a 
typical measurement, a narrow pulse of negative ions is gated into the channel and 
allowed to propagate to a particular position under the action of a drift field E. The 
field is then switched off, allowing the pulse to remain a t  this position for as long as 
several seconds. Some of the ions in the pulse are trapped by quantized vortices a t  
a rate determined by the local value of the line density L ;  the rest drift along with 
the local normal fluid velocity v,. Later, E is turned back on and the received pulse 
is measued by means of one or more electrometers as it arrives at the collectors. From 
the amplitude of the observed pulse and where it falls on the collectors, local values 
of L and v, can be readily determined as a function of where the pulse was stopped. 
The spatial resolution achieved with this interrupted flight technique is better than 
1 mm. 

4.4. A chemical potential detector 

Yarmchuck & Glaberson (1979) have developed a device to make direct measure- 
ments of chemical potential differences. This is a fundamentally important measure- 
ment because the chemical potential indicates that dissipation is occurring, and is 
a direct measurement of the rate a t  which quantized vortices change the phase of 
the order parameter (Anderson 1966). The device, shown in figure 8, consists of a 
differential pressure transducer connected via superleaks to the measurement regions. 
The superleaks (ideally at least) allow no chemical potential difference along them, 
and have infinite thermal resistance. The copper heat exchanger connecting the input 

Quantum turbulence 
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FIGURE 8. The chemical potential detector of Yarmchuck & Glaberson (1979). The two superleak 
outlets are connected to the positions between which the chemical potential difference is to be 
measured. 

FIGURE 9. Thermal shock wave apparatus built at the California Institute of Technology. The 
operation is described in the text. 

tubes ensures that the temperature difference between the two sides is near zero, 
converting Ap to a pressure difference (see (2.18)). This pressure difference bows an 
aluminized Mylar membrane whose displacement is detected by the change in 
capacitance between the membrane and a fixed metal plate. 

The chemical potential detector has been incorporated into other modern appar- 
atus, for example Lorenson et aE. (1985) (see 55.11). 

4.5. Shock-wave apparatus 

Second sound shock waves form an interesting, but perhaps underused, probe of 
quantum turbulence. In $8 we describe some shock-wave experiments, so we include 
a brief description of the apparatus here. 

A gasdynamical cryogenic shock tube for liquid helium research was developed 
by Liepmann, Cummings & Rupert (1973) and Cummings (1974). A shock wave is 
produced in the helium vapour above the bath by modified standard techniques and 
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allowed to strike the free surface of the bath, producing both a pressure and a 
temperature shock in the liquid helium 11. 

Temperature shock waves without significant accompanying pressure shock waves 
can be produced easily by the rapid heating of a thin conducting film. A series of such 
tubes have been constructed by Liepmann’s group (Liepmann & Laguna 1984). One 
of these is shown in figure 9. Part  1 is a brass housing for the apparatus, 2 is a spring 
loading for the heater, a 1000 A thick nichrome film, vacuum deposited on a quartz 
substrate, 3. The sensor, 4, separated from the heater by spacer 6, is a thin film of 
superconducting material biased to be at its transition field by a superconducting 
magnet, 5 .  Such a biased superconducting film has a very fast and sensitive response 
to heat pulses. The shock-wave tube is made of Teflon. 

5. Survey of counterflow induced turbulence phenomena 
This section is a discussion of the properties of quantum turbulence generated by 

steady heat flux in a uniform channel. Much of what is said applies to more general 
counterflow situations (divergent or unsteady heat flux or non-zero mass flux), but 
there are enough differences and complications that we will defer a brief discussion 
of some more general flows to $8 below. 

5.1. Critical heat $ux 
Vinen (1958) observed that a critical heat flux, and hence a critical average 
counterflow velocity vc is necessary to  generate an observable quantity of vortex line. 
He did this with second sound attenuation, and the existence of a critical counterflow 
velocity has been confirmed since by second sound attenuation, temperature and 
chemical potential gradients, as well as ion trapping (Tough 1982). 

5.2. Dependence of line density on  counterjlow velocity 
The dependence of the average line Lo upon vns near critical is complicated. But 
observers generally agree that beyond the critical region 

where y and vo are functions of temperature. The precise values of y and vo have been 
the subject of controversy (Barenghi, Park & Donnelly 1981), but the turbulent state 
classification of Tough (1982) described in $5.9, the recent work on scaling (Schwarz 
1982 b ;  Swanson & Donnelly 1985) described in $6, and the measurement of the tangle 
anisotropy described in $ 5.6 combine to resolve the experimental discrepancies. 

5.3. The Gorter-Mellink law 

The temperature gradient is proportional to the cube of the heat flux when well 
beyond critical. This relationship, named the Gorter-Mellink law, is approximately 
obeyed at  temperatures well below T,, but in general i t  needs to be modified, as 
described in $6.2. 
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5.4. Axial homogeneity of vortex line density in a counterjlow channel 

The vortex line density in turbulent counterflow is axially homogeneous in a properly 
designed channel (see $4.2). The axial homogeneity is consistent with the Vinen 
equations which imply that the tangle is sustained by the local value of vns. Further 
evidence for local creation has been provided by shock-wave experiments of Barenghi 
(1982) described in $8.5. 

5.5. Transverse homogeneity of line density and normal j l u id  velocity 

Awschalom et al. (1984) have reported that the vortex line density L is independent 
of transverse position over a t  least 80 yo of a channel of width 1 cm. This observation 
was made by ion trapping in an  apparatus described in $4.3. I n  the same experiment, 
i t  is reported that the normal fluid velocity profile is uniform over a t  least 80% of 
the channel and the normal fluid is certainly not in Poiseuille flow. The data are shown 
in figure 10(a,b) .  

5.6. Anisotropy of the tangle 

The standard assumption since the work of Vinen (1957a,c) has been that the vortex 
line density is isotropic. We find by simultaneous transverse and axial measurements 
that  the line density distribution is substantially flattened in a direction perpen- 
dicular to  the axial flow (Wang, Swanson & Donnelly 1986). Figure 11 shows the ratio 
L,/L, (see $4.2), which would be unity for an isotropic distribution and 0.5 if all of 
the lines were perpendicular to the Bow. 

5.7. Drqt of the tangle 
Vinen ( 1 9 5 7 ~ )  assumed that the vortex lines, being an excitation of the superfluid. 
would have velocity v, and thus move toward the heater. Measurements by Ashton 
& Northby (1975) suggested that the average line velocity vL = fi,, where 
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FIGURE 11. The ratio of L,/L, of line density as a function of temperature (Wang et al. 1986). 
Even with the substantial uncertainties (which represent three standard deviations), it is evident 
that the tangle is not isotropic since L,/L, is not unity. 

0.2 < f < 0.3 (for 1.3 K < T < 1.6 K), suggesting that the tangle moves toward the 
exit of the channel. More recent ion measurements by Awschalom et al. (1984) 
concluded by finding f < 0.1 (at 1.45 K). Barenghi et al. (1983) suggested that 
combined temperature gradient and second sound measurements could yield the ratio 
J(vL- u,)l/l( v,, - v,)l = vLs/vu,,. This measurement was carried out by Wang et al. 
(1986), who found vL x v, (for temperatures from 1.27 to 2.1 K), in accord with 
Vinen’s original assumption (see figure 12). 

5.8. Fluctuations 

The first apparent observation of intrinsic fluctuations of the tangle were reported 
by Hoch, Busse & Moss (1975) and Mantese, Bischoff & Moss (1977). Further 
measurements were reported by Ostermeier et al. (1980), and Smith & Tejwani (1984). 
Since then apparatus and detection capability has improved considerably and some 
doubt has arisen about the exact interpretation of these early measurements. For 
example, the drift of the tangle past a detector will itself produce fluctuations. The 
intrinsic fluctuations should reflect the dynamics of the tangle itself, and probably 
the size of the volume probed. On the other hand, the Vinen equations can be 
interpreted in a way which gives the response to induced fluctuations of vns. An 
experiment to test this prediction by Barenghi, Swanson & Donnelly (1982) fully 
confirms the predictions of Vinen’s equations. 

5.9. Tough classi,fication of turbulent states 

Tough (1982) has analysed the vast quantities of steady, uniform counterflow data 
and found that there is one feature of the channel geometry which is crucial in 
determining the phenomena, the cross-sectional aspect ratio. (Apparently the 
channels used are long enough for the length to width ratio to be of little importance, 
at least well beyond critical.) For low-aspect-ratio channels (e.g. nearly square or 
circular) there are two turbulent states, state T I  at low heat fluxes and state TI1 

14 P L X  173 
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FIGURE 12. The ratio vLs/v,,, as a function of temperature. The bars represent the data of Wang 
et al. (1986) (the range shown is three standard deviations). The solid horizontal line represents a 
fit to these data. The data of Ashton & Northby (1975) are shown as bars with circles and the 
simulations by Schwarz (1978) as the solid curved line. The dashed line is the laboratory rest frame. 

a t  high heat fluxes, which are separated by a rather complicated transition (see $5.1 1) 
and have different characteristic values of y ,  For high-aspect-ratio channels there is 
only one turbulent state, state TIII, which has values of y similar to state T I I .  Tough 
also designated the turbulence in pure superflow as state T I V ,  a state which has mass 
flow and presumably a flat velocity profile. From the latest data (Opatowsky & Tough 
1981) i t  appears that y in state TIV agrees quantitatively with y in state TI1  (see 
Awschalom et al. 1984 figure 1 b). 

5.10. Combined rotation and counterflow 

Combined rotation and heat flow is a relatively new area of investigation. Measure- 
ments a t  Oregon (Swanson, Barenghi & Donnelly 1983) appear to be relatively 
simple in two limits: 

(i) Limit of large line density L,  due to heat, slow rotation. Here the effect of 
rotation is not simply to add line density L, = 2Q/K. Instead the tangle is polarized 
to accomplish the rotation. The effective polarization increases with rotation Q by 
analogy to a gas of magnetic dipoles in a magnetic field. The results scale with L,/L, 
by analogy to ,uuH/kT. Thus rotation appears to produce alignment in the tangle, as 
does a magnetic field, and L, appears to play the role of a disordering heat bath in 
the statistical mechanics of quantum turbulence. 

(ii) Limit of fast rotation and small axial heat flux. Any rotation eliminates the 
critical velocity vc. In this limit two critical counterflow velocities appear, vcl and 
vc2, which scale as &. The first appears to correspond to the Donnelly-Glaberson 
instability (Cheng, Cromar & Donnelly 1973 ; Glaberson, Johnson & Ostermeier 
1974) : excitation of helical waves by the counterflow on the vortex lines induced by 
rotation. The second appears to be a transition to turbulence, with the rotation 
induced array becoming a vortex tangle. 
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described in the text. 
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5.1 1. Dynamics of the TI-TI1 transition 

The TI-TI1 transition is most easily observed in narrow channels. Recently Tough’s 
group have reported complex dynamical features of this transition (Lorenson et al. 
1985), made by measuring the chemical potential difference Ap across a short (1  cm), 
narrow glass tube (diameter 0.0134 cm). The narrowness of the tube increases Ap for 
a given state, while the shortness decreases the steady difference but emphasizes the 
fluctuations. The measurements of Ap were made with a device similar to that of 
Yarmchuck & Glaberson described in $4.4 above, and the line density can be deduced 
as described in $2.6. The results, shown in figure 13, depict a rich and complicated 
transition. Figure 13(a) shows the steady state line density (note that Lbd is 
essentially the number of vortices across the flow tube), and i t  is clear that the 
transition is relatively wide. Point a corresponds to the start of the region where Lo 
differs from state T I .  The fluctuation spectra are relatively featureless, but the power 
spectral density around any particular (fairly low) frequency changes dramatically 
through the transition, as shown in figure 13(b), with a broad peak around point b 
and a peculiar subpeak a t  point c. Figure 13(c) shows that point c corresponds to a 
sharp peak in the response time, which is otherwise relatively steady. This system 
presents the exciting prospect of a continuous transition in which the fluctuations 
can be studied directly. 

6. Vortex dynamics and scaling 
6.1. The conditions for geometric similarity 

The classical vortex dynamics of an ideal fluid and the theory of mutual friction 
combine to give an equation of motion for a vortex filament in a direction transverse 
to its local tangent (this derivation is given, for example, by Swanson & Donnelly 
1985). The theory underlying vortex dynamics in helium I1 is primarily the work of 
Hall & Vinen (1956b). Schwarz (1978) has put the equations in a quite useful form 
and has given a dimensionless form of vortex dynamics, from which he derived a 
scaling law (Schwarz 1982b). The discussion below is a summary of that  in Swanson 
,% Donnelly (19851, whose work made use of Schwarz (1982b) and Awschalom et al. 
(1984). 

I n  the approximation that the vortex core has no inertia, the dimensionless line 
velocity in the superfluid frame, uL = (vL-vs) /vns,  can be written as 

u L =  ui+ars’x(u-ui)-ar’s’x(s’x(u-uui)) ,  (6.1 1 
where s’ = K/IicI is the unit tangent to the line, a = Bpn/2p, 01‘ = B’p,/2p, and we 
have defined the dimensionless counterflow velocity u = vns/vns and tangle-induced 
superfluid velocity ui = ui/v,,. Time will scale with dlv,,, where d is a typical 
flow-channel dimension. 

Dynamical similarity in two geometrically similar flows requires that all tangle 
lengths scale with d and that the velocity ratio ui must be the same for similar points 
on the tangles in each flow. Since the core parameter a cannot scale with d (remaining 
fixed with temperature), the finite core size a becomes important for scaling, a fact 
not appreciated until recently (Schwarz 19826; Swanson & Donnelly 1985). 
Approximate dynamical similarity will occur if ui, the average magnitude of ui, is 
the same in the two flows. 

Using the localized induction approximation of Arms & Hama (1965) one finds that 
ui is proportional to a logarithmic factor 1 = In (R/aeff), where R is the local radius 
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FIGURE 14. Second critical velocity in small-aspect-ratio channels at various temperatures. The 
left-hand plot is scaled with channel size, while the right-hand plot includes the logarithmic 
parameter as in (6.4). d (cm): ., 1.00 Swanson (1985); V, 0.262 Chase (1963); 8 0.159 Chase 
(1963); (>, 0.140 Peshkov & Tkachnko (1961); 0, 0.080 Chase (1962); 7,  0.057 Oberly & Tough 
(1972); .,0.0366 Brewer & Edwards (1961); IJ 0.0131 Ladner, Childers & Tough (1976); A, 0.0108 
Brewer & Edwards (1961). 

of curvature of the line and aef f  is an effective core parameter. In terms of the average 
line density Lo, ui will be proportional to the average logarithmic factor 

where c and g are of order one (c = <l /R) /Lb  and g = aef,/a; see Schwarz 1978 for 
calculations of c from simulations). Defining P = ~ l ~ / 4 1 r  (with dimensions of kinematic 
viscosity), the dimensionless applied counterflow velocity V (analagous to a Reynold's 
number) upon which tangle properties will depend is 

6.2. Implications of scaling 
There are two major implications of the scaling of tangle properties with V ,  i.e. the 
scaling of critical velocities with channel size and the relationship between line 
density and counterflow velocity (for high velocities). This relationship has further 
implications, e.g. the scaling of y with channel size and the temperature and heat 
flux dependence of the Gorter-Mellink law exponent. 
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We can define a dimensionless critical velocity from (6.4) : 

where v, and are the values of on, and B at the critical velocity. I n  figure 14 we 
show measurements of v c z d ,  the second critical velocity in small aspect ratio 
channels scaled by the channel size (ignoring the logarithmic parameter), and of VC2,  
i.e. the same data scaled according to (6.4). We can see substantial improvement 
in agreement between measurements in various sized channels with the inclusion 
of the logarithmic parameter. Similar improvements in agreement can be seen for 
other critical velocity measurements (Swanson & Donnelly 1985). 

At high counterflow velocities, the boundary region becomes less important for 
determining average tangle properties, and Lo need not be proportional to  Then 
(6.3) can be written as 

U. 
L+L" ns. (6.5) 

P C  

The dependence of Lo on v:s can thus be derived simply from the scaling of vortex 
dynamics in the approximation that the logarithmic parameter is constant. Inclusion 
of the logarithmic parameter gives a remarkably good fit to the data, as can be seen 
in figure 15. 

We can make a linear approximation of (6.5) about some on, = vns0, where lo has 
the value lvo, finding 

L'a = Y('u,s-vo)> (6.6) 

where y = 47cui/~c(lvo- 1 )  and vo = vnso/lvo. The parameter vo which appears in this 
expression for Lo is the same as the vo appearing in the Gorter-Mellink relationship. 
It has no physical significance. I t s  presence arises naturally due to logarithmic 
scaling, and its value depends on where one makes the linear approximation as well 
as on temperature and channel size. Below we will use a nonlinear power law 
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approximation to (6.5), Lt = bv&, which is good over a much wider range than the 
linear approximation. 

It is clear from comparing (2.25) with (6.5) that the quantity y is a function of the 
logarithmic parameter, which is implicitly a function of vns. I n  experiments measuring 
y the counterflow velocity is usually somewhat above critical, so the implicit velocity 
dependence of y is seen as a channel size dependence. Figure 16 shows yz  (y  in 
state T 11) as measured by various investigators, and the same measurements scaled 
by the implicit channel size dependence of y. We see substantial improvement in the 
agreement. Similar improvements in agreement can be seen for other measurements 

The logarithmic parameter also has implications for the Gorter-Mellink relation- 
of y.  

ship between the temperature gradient and the applied heat flux, 

If (2.11) held, then m would be three, which is only very roughly correct. It can be 
shown (Swanson 1985) that 

where G is a geometric factor (Q = $ if the tangle is isotropic and drifting with the 
superfluid). Equations (6.7), (6.8), and the power law approximation to  (6.5) combine 
to yield (6.7) with m = 2n + 1. Including the velocity dependence of a (or equivalently 

(6.8) Fns = -P s KQ'aLVns 9 
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FIQURE 17. The Gortel-Mellink m as a function of temperature and heat flux. From the top the 
lines are for heat fluxes of 10 W/cm2, 1 W/cm2, 0.1 W/cm2, 10 mW/cm2, and 1 mW/cm2. 

B in (2.12)), one finds that (6.7) is a good local approximation about some heat flux 
qo, with m a function of temperature and qo as shown in figure 17. These values are 
consistent with a variety of experiments (Ahlers 1969; Bon Mardion, Claudet & 
Seyfert 1978; Swanson 1985) that have roughly determined m. The theory leading 
to this figure breaks down as m grows, essentially because the core becomes 
comparable to L,$, but it is probably good while m is less than 4. 

It can be seen from this section that the logarithmic parameter, the logarithm of 
the ratio of a macroscopic tangle length to the atomic sized core parameter, has effects 
of macroscopic and even engineering consequences. Apparently the one-dimensional 
nature of the tangle makes this ratio more important a t  larger values than say, for 
example, the ratio of a container dimension to the mean free path in kinetic theory. 

7. Simulations of vortex dynamics 
The dynamics of vortices in helium I1 forms a particularly attractive problem to 

simulate numerically. The equations of motion are well known and, because of the 
microscopic core size, a thin vortex filament approximation is very good. One needs 
to follow only a one-dimensional set of points moving in three-dimensional space, 
rather than a three-dimensional set as in, for example, simulations of the Navier- 
Stokes equation. I n  addition, Arms & Hama (1965) developed a simple local 
approximation to the vortex line induced velocity which is very useful in helium 11. 
Despite this attractiveness, significant simulations of quantum turbulence have been 
carried out only by Schwarz (1978,19823,1983,1985) at IBM over a number of years. 
We will discuss in this section what we feel are the major insights for quantum 
turbulence from the IBM simulations, and what are the outstanding discrepancies 
with experiment. 
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FIGURE 18. Illustration of a possible reconnection sequence between vortex filaments in a 
tangle. 

7.1.  Major insights from the simulations 

Schwarz (1978) has shown that the Arms-Hama local induction approximation 
(hereafter referred to as the local approximation) is generally valid in quantum 
turbulence, but that there are some instances when the ‘far field’ becomes important. 
These instances occur when previously distant portions of the tangle or the tangle 
and its image approach more closely than a critical distance (Schwarz 1985). Thus 
vortex simulations can be successfully broken down into two parts: 

(i) A local approximation which is generally valid. 
(ii) Discrete events, line-line or line-boundary ‘crossings ’, where the far field is 

significant. 
With a local approximation, portions of the tangle with small radius of curvature 

or local induced velocity vi opposite to the counterflow will evanesce due to mutual 
friction. Other portions will grow and be annihilated a t  the walls. Thus vortex 
crossings are necessary to keep a tangle self-sustaining, and the treatment of such 
crossings is crucial to a successful simulation. In early work, Schwarz (1978) forced 
a randomization of the vortex configuration in the vicinity of the crossing, which was 
costly in computer time, but allowed successful simulations of steady-state flows 
without boundaries. 

A second major insight from Schwarz’s work (1982b) is that one can replace the 
configuration randomization with a simple ‘ topology-changing reconnection ’, with 
similar results and a great increase in ease of implementation. Such a reconnection 
is depicted in figure 18. In  recent work, Schwarz (1985) has shown that a reconnection 
is feasible, but classical vortex dynamics breaks down as the distance of closest 
approach becomes of the order of the core size, and one is left with a quantum 
mechanical problem. There is some evidence (Schwarz 1982a) that, in fact, a topology 
changing reconnection does not occur at every crossing. What really happens a t  a 
crossing is a major unsolved problem in quantum turbulence, which we shall discuss 
further in $7.3. 

Probably the greatest lesson from Schwarz’s simulations is the success in repro- 
ducing experimental phenomena which has been achieved using the equations of 
vortex dynamics with several simplifying assumptions. The counterflow was assumed 
to be uniform, as in state T I V  (pure superflow), the velocity dependence of a and 
/3 was ignored (eliminating the weak velocity dependence of Lo/@&), a‘ was ignored 
(valid except near TA),  and periodic boundary conditions were used (ensuring 
homogeneity of the line density). 

In early simulations (Schwarz 1978), i.e. prior to implementing the reconnection 
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ansatz, boundaries were ignored and thus critical velocities were not reproduced. 
Nevertheless, the success was quite remarkable. The vis  dependence of Lo was 
reproduced (as scaling arguments now show must happen). The mutual friction force 
and the line density were in suprising quantitative agreement with experiment, well 
within the range of the rather scattered experimental results of the time (see $5.2). 
The simulation produced a drift velocity of the tangle as a whole which agreed with 
the data of Ashton & Northby (1975) (although current experimental results 
contradict this result; see $5.7). 

Implementation of the topology changing reconnection ansatz allowed boundaries 
to be included through line-boundary reconnections (although v,, remained uniform). 
With this improvement, Schwarz (1983) was able to reproduce wcl and vc3, the first 
critical velocities in small- and large-aspect-ratio channels. It is curious that the 
temperature dependence of the critical velocity found by the simulations was much 
stronger than wc4 (Baehr, Opatowsky & Tough 1983), and indeed similar to that in 
counterflow. Awschalom et al. (1984) report new calculations of y (smaller than 
reported by Schwarz 1978) which agree remarkably well with the measurements of 
yz and with the most recent measurements of y4 (Opatowsky & Tough 1981). 

7.2. Current discrepancies with experiment 

The closest experimental approximation to the uniform flow used in numerical 
simulations is pure superflow. The current discrepancies of simulations and experi- 
ment are (counterflow observations are included if pure superflow data is not 
contradictory) : 

1.  The transverse homogeneity of the vortex line density has not been reported 
in the case where boundaries were considered. 

2. The anisotropy of the tangle observed in state TI1 has not been reported. 
3. The drift velocity has not been reported in the later simulations. 
4. The later simulations produce critical velocities comparable to  those observed 

in states T I  and TI11 and not in TIV as might have been expected (Baehr et al. 1983). 
5. The aspect ratio dependence of the critical velocity seen in simulations has not 

been observed in pure superflow. 

7.3. Vortex reconnections : a problem in quantum mechanics 

The idea of vortex reconnections was first put forward by Feynman (1955) in his 
discussion of the decay of a vortex tangle into heat. When two oppositely-directed 
bits of vortex line approach closely enough, one might speculate that the reduction 
in the scale of the flow might cut off the circulation and hence allow the reconnection 
process to occur without violation of Kelvin’s circulation theorem. This problem has 
not been directly addressed, and is likely to  be a difficult problem in quantum 
mechanics. Some indirect evidence, however, exists. Jones & Roberts ( 1982) have 
made a study of the Ginzburg-Pitaevskii equation for a family of vortex rings of 
steadily decreasing ratio of radius to core size. They find that a t  a definite value 
of this quantity, the circulation disappears, and the remnant of the vortex becomes 
solitary waves of compression. I n  the most recent paper on motions in a Bose 
condensate, Jones, Putterman & Roberts (1  986) have demonstrated by direct 
numerical calculation the establishment of a vortex core and circulation in the 
evolution of the nonlinear Schrodinger equation. 

The Schwarz simulation has gone beyond the Feynman speculation in addressing 
the problem of a self-sustaining tangle. I n  particular he has shown that when bits 
of line approach which are parallel in sense of circulation, the line can wrap around 
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(Baehr & Tough 1985). 

in such a way as to allow reconnection to take place. The final resolution of the 
quantum mechanics is a challenging problem, but a t  the present time i t  looks as if 
the necessary conceptual basis is given by the Jones & Roberts calculation. 

8. Investigations of more general flows 
8.1. Pipe flow with mass f lux 

The bulk of the results discussed in this paper, and indeed in the literature as a whole, 
have to do with pure counterflow, a state of zero mass flux (equation (2.3)). In  
counterflow it  is known (Tough 1982) that  the dissipation depends qualitatively on 
the tube shape. I n  tubes of square or circular cross-section, the turbulence evolves 
from a low density state T I  to a high density TI1 as the counterflow is increased. 
High-aspect-ratio channels are in state T 111. Pure superflow, state T IV, has 
dissipation independent of tube shape. 

Using the apparatus described in $4.1 i t  is possible to add a counterflow to a 
superfluid flow at various selected velocities. I n  this way dissipation can be mapped 
out in the (un, us)-plane for many velocity combinations between pure superflow and 
counterflow. Early experiments of this type were reported by investigators a t  Leiden, 
most recently in van Beelen's group (e.g. Slegtenhorst, Marees & van Beelen 1982). 

An investigation by Baehr & Tough (1985) examines the dissipation in detail in 
a quadrant of the (un, us)-plane shown in figure 19. If the line density were dependent 
on u,, alone, the data would fall on lines inclined at 45O to the axes. The deviations 
from this behaviour are clearly evident. The irregularity shown probably marks the 
TI-I1 transition which somehow must begin in this quadrant, but whose origin is 
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FIQURE 20. The counterflow jet shown in the standard picture in which the superfluid flows into 
the orifice toward the heater in potential flow and the normal fluid exits as a classical viscous jet 
which is shown impinging upon a free surface (Liepmann & Laguna 1984). 

obscure at  present. One important conclusion is that dissipation depends separately 
on u, and us and not simply on the combination un,. These elegant data will serve 
as a basis for future theoretical discussion of these more general flows. 

8.2. The normal j e t  
We have described in $2.3 above the pioneering experiments of Kapitza on the jet 
emerging from a counterflow channel. This interesting flow was ignored for over thirty 
years until taken up by Liepmann’s group at Cal-Tech. A recent review by Liepmann 
& Laguna (1984) traces much of this modern investigation. The conventional 
understanding of the jet is shown in figure 20, where the normal fluid exits in a 
well-defined jet and the superfluid flows back into the orifice in potential flow. This 
picture leads to the conclusion that the counterflow velocity in the main part of the 
jet u,, x un. High values of v,, will lead to the formation of vortices in the submerged 
jet, and therefore vortices should be detectable by thermometry or by second sound. 

Dimotakis & Broadwell (1973) carried out an experiment to measure the 
temperature profile of the jet by traversing a small carbon thermometer along the 
axis of the jet. The (approximately a mm) tube shape was designed in such a way 
as to have the highest counterflow velocity near the orifice as shown in figure 20. The 
results showed that the temperature gradient extends only over the region confined 
by the channel walls near the exit. 

In  another experiment Laguna (1975) measured the attenuation of second sound 
in the jet. The jet passed through a plane parallel resonator for second sound, and 
the change in Q of the resonance was measured. The attenuation in the jet was found 
to be 15 times less than that expected in a thermal counterflow channel and varied 
as @ instead of q2. 

Liepmann & Laguna (1984) suggest that the measurements described above 
support the idea that the superfluid is entrained with the jet. This means that there 
must be a superfluid stagnation point a t  the orifice with superfluid flow into the 
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FIGURE 21. Apparatus used by Schwarz & Smith (1981) and Milliken et al. (1982) to study 
ultrasonically generated turbulence. Ions are produced by a radioactive tritium source S and 
manipulated by screen grids SG1 and SG2 to produce ion pulses. An ion pulse, drifting under the 
influence of the field determined by SG2 and the Frisch grid FG on the right can be stopped 
anywhere in the cell by making the drift field zero. 

channel and along with the normal fluid jet. Rather than attribute the small 
attenuation of second sound to vortices in the jet, the authors calculate the scattering 
of second sound by fluctuations in the jet based on a model by Liepman (1952) for 
the diffusion of a light ray passing through a turbulent boundary layer. They find 
non-trivial agreement with helium experiments and theory, and conclude that the 
superfluid must move with the normal fluid: using v,, in place of v, gives the wrong 
temperature dependence. They also conclude that the normal jet is turbulent. 

8.3. Ultrasonically generated turbulence 

A novel form of quantum turbulence generation has been devised by Smith and his 
colleagues (Carey, Rooney & Smith 1978). Recent experiments (Schwarz & Smith 
1981 ; Milliken, Schwarz & Smith 1982) have utilized the apparatus shown in figure 
21. The pair of ultrasonic transducers T set up a strong acoustic field in the 
cross-hatched region. 

The authors believe that the turbulence, which is studied by negative ion trapping, 
is generated and maintained by acoustic streaming and hence reflects some very 
complicated physics. The sound has a wavelength of about cm, hence the 
experimental regions shown cross-hatched in figure 21, lies in the extreme Fresnel 
diffraction limit, and the level of acoustic excitation is expected to drop off sharply 
at  the edges of the ultrasonic beam. 

The grids SG1 and SG2 (see figure 21) are manipulated to introduce a narrow ion 
pulse into the main drift space, and it is detected when it reaches the collector C. 
The attenuation of the pulse caused by ion trapping is a measure of the vortex line 
density L. The authors, however, introduced a novel technique in which they stopped 
the pulse (by making the drift field zero) at some point z,, on the path, and allowed 
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FIGURE 22. Data of Schwarz & Smith (1981) showing the line length per unit volume L(z,) for various 
positions zo in the drift cell of figure 21. The ultrasound reference level was a few mW/cm2 and 
the three curves represent power densities 1 dB (circles), 3 dB (squares), and 5 dB (triangles) below 
the reference level. The dashed lines show the location of the boundaries of the ultrasonic beam 
producing the turbulence. The temperature was 1.47 K .  

the ions to interact with the local vortex field for an additional time roff. The drift 
field is then switched on again, and the remaining free ion pulses are detected at  C. 
Measurement of the attenuation as a function of rOff and at different locations x 
allowed a direct measure of the spatial structure of turbulent field. Careful experi- 
ments were performed to  assure that the capture process in the tangle was the same 
as for capture by uniform vortex lines in a rotating bucket. This information was 
used to extract the line density L(x,) from the data. 

The data obtained on L(x,) are shown in figure 22. It appears from the 5 dB curve 
(triangles) that  the turbulence is created more or less homogeneously in the ultrasonic 
beam. Some line density leaks out and fills the cell a t  a very low level, the amount 
leaking out becoming relatively more pronounced as L increases, the profile becoming 
more peaked and developing pronounced wings. 

I n  a further development with the same apparatus, Milliken et al. (1982) examined 
the decay of the turbulence when the transducers are turned off. Data on the decay 
taken a t  the centre of the cell are shown in figure 23. The line in figure 23 comes from 
an argument about the decay of the tangle which gives an equation essentially the 
same as that proposed by Vinen (1957c), but with a different interpretation. 

8.4. Injected turbulence 

About 1960, H. A. Snyder was investigating second sound absorption in a rectangular 
rotating resonator made of a porous fired material called Lavite. He discovered that 
the interior of the resonator, intended to be quiescent for studies of the vort'ex array 
in rotation, was filling with turbulence, presumably from turbulence generated in the 
bath by stirring of the rectangular resonator. Foreman & Snyder (1979) followed up 
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FIGURE 23. Measurements of the free decay of vortex line density L a t  the centre of the cell 
taken by Milliken et al. (1982). 

this unpublished discovery with the apparatus shown in figure 24. Second sound is 
excited in the upper and lower resonant cavities by Joule heating of a thin silver film 
applied to a cavity wall. Both cavities are radial mode oscillators and detection is 
provided by monitoring the change in resistance of Aquadag carbon film applied to 
the cavity wall. The filters are fine-pore, high-porosity, cellulose-ester filter elements 
used commonly in biological experiments. 

Data were taken by exciting second sound in the lower resonant cavity which passed 
through a lower filter of 300 nm pore size. Attenuation of second sound was measured 
in the upper cavity and found to reflect the rotation of the paddle through a I00 nm 
filter. The attenuation increased with paddle speed and increased with temperature 
for a given paddle speed. I n  a further experiment with the upper filter 5000 nm 
pore size the lower 75 nm pore size, it was shown that the smaller pore size completely 
blocked the passage of quantized turbulence. Why this apparent size dependence 
should occur is not known. 

d’Humieres & Libchaber (1978) have also studied the self-diffusion of superfluid 
turbulence through a porous medium, arranged to  allow no net mass transport of 
fluid. The motor-driven propeller creates turbulence which is studied in a resonator 
equipped for second sound (figure 25). The injection hole was 2 mm in diameter. The 
authors report that  they can transmit vortex rings through media in which the pore 
size is of diameter larger than the vortex rings. 

Several unpublished experiments have been done at Oregon to explore injected 
turbulence using a counterflow source in place of the propeller of the previous studies. 
A short counterflow channel with side exits is adjacent to a long closed chamber 
separated by filter paper. When the counterflow source is operating above a critical 
heat flux, vorticity fills the isolated chamber and appears to be spatially homogen- 
eous. The magnitude and temperature dependence of the vorticity in the chamber 
appears to follow the magnitude of vorticity generated by the source in the open 
channel. The injected turbulence would appear in some sense to be an independent 
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FIGURE 24. Apparatus of Foreman & Snyder (1979) used to study the motion of turbulence through 
porous filters. The entire apparatus shown is enclosed in a copper shielding can. P, rotating paddle 
to produce turbulence 1 ,  upper filter; 2, upper cylindrical resonator; 3, lower filter; 4, lower 
cylindrical resonator. 

fluid capable of existing in the long channel in the absence of any mean counterflow. 
This interesting system appears to deserve more attention. 

8.5. Shock waves 
Second sound shock waves have been studied since Osborne (1951) first reported 
nonlinear effects in the propagation of second sound. A second-order theory developed 
by Khalatnikov (1965) and more recently extended by Turner (1979) describes weak 
shocks. A series of important second sound shock wave experiments have been carried 
out a t  Cal-Tech. In 1978, Cummings, Schmidt & Wagner observed a shock-limiting 
process, which was studied in detail by Turner (1979, 1983). Since shocks produce 
large counterflow velocities away from the influence of boundaries, it was at  first 
thought that the shock was probing a bulk, or intrinsic, critical velocity in helium 
I1 (Turner 1979, 1983). Torczynski (1984a,b) has shown instead that the shock is 
limited in its formation, and that this formation is accompanied by the production 
of large amounts of vorticity. By producing a convergent spherical shock, Torczynski 
(1984a) has produced counterflow velocities as large as 10 m/s, but the shock- 
limiting processes still occur in the shock formation and not in the bulk. 

Although second sound shocks do not yet probe a bulk critical velocity, they do 
interact in interesting ways with vortex lines, and this interaction depends upon the 
relative orientation of the propagation direction and the vortex line (Torczynwki 
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FIGURE 25. Experimental apparatus used by d’Humieres & Libchaber (1978). 1 ,  motor; 2, motor 
support; 3, funnel; 4, propeller; 5, support of second sound transmitter and receiver; 6, support 
for porous medium; 7 ,  porous medium; 8, cylindrical cavity; 9, aquadag layer on nuclepore foil 
10, fixed electrode for emitter; 11, fixed electrodes for twin detectors; 12, stycast seal; 13, indium 
O-rings. 

1984b). This interaction is not yet understood, but could form a useful probe of 
quantum turbulence. 

Some preliminary experiments on shock waves were done using one of the early 
Oregon channels and reported by Barenghi (1982). Barenghi’s experiments, done by 
attenuation of second sound, allowed him to conclude that vortex lines can be created 
by shock waves and that the velocity a t  which the initiation of vorticity is propagated 
is the velocity of second sound. 

9. Open questions and outlook 
We hope that the preceding sections have given some indication of why the subject 

of quantum turbulence interests us, and the sorts of investigations which have been 
and are being carried out. We now discuss what we believe is to be some of the open 
questions in this subject, and what the outlook is for progress on them in the near 
future . 

9.1. Theoretical questions 
Theoretical questions naturally break up into two major divisions : those problems 
having to do with individual vortex lines, and those having to  do with the vortex 
tangle as a whole. 
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An example of the former is the microscopic theory of vortex dynamics. This 
subject, largely the achievement of Vinen and Hall, rests on a series of very careful, 
often very difficult arguments (see, for example, the recent review by Barenghi et al. 
(19831, which presents two novel arguments for the existence of the Iordanskii force). 
The difficulty arises because there is no true microscopic theory for helium 11, and 
present models of the core are subject to approximations and guesses. One of the 
problems plaguing any attempt to invent such a theory is the enormous range of the 
variables involved. At low temperatures, for example, the collision of a roton with 
a vortex line is a problem in kinetic theory. Near T,, the density of elementary 
excitations is so large that it is not clear which excitations belong to a vortex line 
and which are free to interact (Barenghi, Donnelly & Vinen 1985). 

The reconnection problem seems to be a fundamental problem in quantum 
mechanics. There is, however, no known wave function for liquid helium. Quantum 
calculations generally use the Ginzberg-Pitaevskii equation which is unlikely to be 
exact, but has a long record of providing reasonable insights. Similady, the 
interaction of vortices with boundaries is a relatively new area of study and the 
problem is far from understood in detail (e.g. Glaberson & Donnelly 1986). 

The second class of problems has to do with the behaviour of vortex lines in the 
bulk. The generalization of forces on a single vortex filament to forces on an array 
of vortices has always rested on the idea that there is no essential difference, on 
average, between the two situations. Another assumption sometimes made is that 
forces on vortices do not react back on the flow that establishes them. The 
Gorter-Mellink equations (2.4), (2.5) and (2.11) suggest that  a high density of vortex 
lines, a t  least, will modify the normal fluid velocity field. The modification of 
Poiseuille flow to nearly uniform flow of the normal fluid a t  heat fluxes not greatly 
exceeding critical (figure 10) needs to be understood in some detail. 

We have observed in $8.1 that the addition of mass flux to a counterflow produces 
some qualitative changes, including the disappearance of the T I-T I1 transition. 
There are few guesses a t  present, as to the origin of these effects. 

The magnitude and temperature dependence of critical velocities is a problem of 
long standing in the study of helium 11. Theories divide into those concerned with 
the nucleation of the first vortices in the flow, and those concerned with the growth 
of pre-existing vorticity. The nucleation problem subdivides further into theories of 
homogeneous nucleation in the bulk fluid and theories where the presence of 
boundaries plays an important role in the process. For example, one cannot yet 
understand the origin of vortices even in equilibrium rotation experiments. A similar 
lack of understanding exists concerning the magnitude and temperature dependence 
of the coefficient y connecting the flow velocities and line densities. 

The results on the polarization of the vortex tangle by rotation discussed in $5.9 
lead one to ask whether it is possible to say anything meaningful about the statistical 
mechanics of quantum turbulence. Experience with classical turbulence does not 
encourage one to be too optimistic, but the quantum turbulence problem offers some 
simplifying features ($3.3). 

9.2. Experimental questions 
The comparison of classical and quantum turbulence of $3.3  points out the question 
of the lack of a local probe for quantum turbulence. Indeed, the vortex simulation 
offers the only insight available today to our problem on a scale comparable to the 
mean vortex spacing. While no one has yet made a serious attempt to produce a local 
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probe, i t  is an open question as to  whether the effort to  do so would be offset by insight 
greater than one can achieve by numerical simulation. 

One benefit of a local probe would be to try to observe correlations of velocity or 
vorticity a t  different times and places in the flow. There have been attempts to 
observe correlations between (average) fluctuations of vortex line density in different 
parts of a counterflow, but no notable results have yet emerged. 

There have been only a few attempts to  push the temperature range in vortex line 
turbulence experiments beyond the usual 1.2 K-2 K range. But experiments below 
1 K, where thermal excitations are nearly absent, and experiments near the lambda 
transition offers frontiers which have scarcely been examined experimentally. 
Addition of small amounts of 3He may also afford a new system for investigation. 

An underlying question in quantum turbulence is the core structure. Experiments 
to probe this structure may be possible near T,, where the core size diverges. 

Induced fluctuations have proved to be relatively easy to understand ($5.7). 
Intrinsic fluctuations, which might be expected to shed light on the dynamics of the 
tangle, have been less illuminating than once had been hoped. Not the least of the 
problems is the realization that bulk motion of the tangle as a whole past a local point 
of observation will itself produce fluctuations. An associated problem is that  we do 
not know whether the normal fluid is turbulent, and in view of vortex fluctuations, 
just what that means. If the normal fluid is turbulent, the its own fluctuations are 
likely to interact with those from the vortices. 

Injected turbulence is essentially a completely new area of research. Since vortex 
line turbulence is associated with motions of v, and of us, the question is how vortex 
line is produced and maintained in a nearly closed cavity. Are there substantial bulk 
flows through the filters ? Do leaks play a role ? If injected turbulence really represents 
a turbulent vortex line sample in the absence of any mean flow of vn or v,, then i t  
is indeed a new and unique form of turbulent flow. 

More is known about rotating quantum turbulence ($5.9). This is clearly a very 
rich system, encompassing a wide range of phenomena ranging from rotation with 
small heat flow to highly turbulent flow with small rotation. The combination of 
rotation with more general flows, such as pure superflow, has not yet been attempted. 

There are specific questions about steady pipe flow that remain unanswered. For 
example, the TI-TI1 transition occurs for small-aspect-ratio channels in counter- 
flow, but not in larger-aspect-ratio channels or in pure superflow. One would like to 
know how this transition disappears with aspect ratio and with various trajectories 
in the (vn, 'us)-plane. Another example is the change in critical velocity with aspect 
ratio predicted for pure superflow by the simulations, but not yet seen 
experimentally. 

9.3. Simulation questions 

The most obvious open questions for numerical simulations are the discrepancies with 
experiment discussed in $7.2. Simulations of a state other than TIV could prove very 
enlightening. 

There are many areas of quantum turbulence research in which simulations have 
not yet been attempted. Interesting frontiers include turbulence near T,,  where a' 
cannot be ignored and where the core structure may become important, transient 
states (e.g. free decay or turbulence fronts as seen by Peshkov & Tkachenko 1961), 
and turbulenc with rotation. Injected turbulence would also be an interesting 
problem for simulations, although i t  seems that experimental questions may need to 
be answered first (e.g. what is the applied flow field 2 ) .  

An unresolved problem is the flattening of the profile of 'u, above critical (see $5.5). 
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Is this due to line-boundary interactions or to normal fluid coupling to the line 
motion, or both? Does the normal fluid become turbulent? If so, does this force a 
change in the one-dimensional character of the simulations 1 

One should also formulate questions for simulations that a local probe might be 
used to answer. Questions of this nature include correlations of velocity fluctuations, 
geometric details (e.g. the ratio of interline spacing to radius of curvature, average 
of higher derivatives of the configuration, etc.), and fluctuations of line density in 
some given volume. 

9.4. Outlook 
We hope that this paper demonstrates that quantum turbulence is a field with a 
substantial body of knowledge and substantial current activity, but that has exciting 
and fundamental questions still to be answered. 

We believe that progress in answering these questions will probably require efforts 
in experiment, theory, and numerical simulations. If i t  proves possible to account 
for the principal experimental results by simulations, and if theoretical progress is 
along the lines generally accepted today, we believe that we shall be in a position 
before long to say that quantum turbulence is on its way to being understood. By 
‘understood’ we mean that the results of an experiment not yet performed could be 
predicted by calculations and/or simulations using only the fundamental laws of 
vortex dynamics. 

The authors are very grateful to A. Leonard, P .  H. Roberts, K. W. Schwarz, 
J. T. Tough, C. W. Van Atta, W. F. Vinen and W. T. Wagner for numerous sugges- 
tions for improvement of this paper. Our research is supported by the Low 
Temperature Physics Program of the National Science Foundation under grant 
DMR 83-13487. 
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